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INTRODUCTION

The influence of vibrational anharmonicity on the distribution of molecules under unbalanced conditions
has been studied in a number of papers [1, 2-4]. Nonequilibrium conditions are due to an increase in the vi-
brational energy resources of the molecules beyond the equilibrium value corresponding to the gas tempera~
ture. The basic details of the distribution have been clarified [5, 6] for steady-state conditions. A Treanor
[7] distribution is realized in the lower group of levels. A group of levels whose concentration varies quite
slowly is next and the distribution has the form of a plateau. Quantum exchange processes predominate in
this group of levels as well as in the region of the Treanor distribution, Vibrational—translational exchange
becomes substantial in the upper part of the vibrational levels. This induces a drop in the populations and, in
the end, leads to a Boltzmann distribution. All three characteristic regions of the distribution are realized
only under highly nonequilibrium conditions (a criterion under which the three regions exist was obtained in
[3, 4]). Distribution relative to levels in the Treanor region and on a plateau has been analytically described
in [2], in which a diffusion approximation was used to obtain the corresponding equation. A plateau region co-
inciding with previous results [2] also in passing from a plateau to a Boltzmann distribution has been found [8,
4] using this approximation. However, the approximation and the use of a number of assumptions in [3, 4] do
not allow a sufficiently precise description of the entire transition region. In this work, using a system of
balance equations for particles on the vibrational levels, an approximate analytic equation for the distribution
in the transition region is obtained for steady-state conditions. The case of strong nonequilibrium conditions
in a single-component gas of diatomic nonradiating molecules is considered. The distribution corresponding
to the analytic equation agrees with results of a numerical calculation. A relaxation equation for the number
of vibrational quanta and the rate constant for nonequilibrium dissociation are also obtained.

§1. AMorse oscillator (energy of k-th level, Ej =wk—\ k) will be taken as themodel of a molecule,
Vibrational relaxation of nonradiating molecules is described by the system of balance equations

aN, i .
5 T sttt — I, (1.1)

* L2
jntt = Pott,nVni1 — PangiNn,

where Ny, is the concentration of molecules on the n-th vibrational level, P*,4 5 is the probability of the
transition n +1-+n within a unit of time and is determined by vibrational —translational and vibrational-vibra-
tional exchanges (V—T and V—V processes, respectively):

o i -
Phtin = Pasin+ 5 2 ORTA N, (1.2)
m

where N, =N, is the concentration of molecules. The probabilities of V=T and V=V processes can be
n

given in the form [1]
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Pypig = (n--1) Py e, Qratt = (n+1) (m + 1) Qlfe T , (1.3)

where 6 depends on gas temperature T and the parameters of the molecule.

The time derivatives in Eqgs. (1.1} vanishunder the steady-state conditions and Egs.(1.1) canbe rewrit-
ten, without taking into account dissociation (jp =0), in the form [1}]

FIE | P*_’ A
N, =N, H Py @y = ———":’1-*—1- (1.4)
i=h it1,i
The system of equations (1.4) for populations is nonlinear and a method of iterations can be one possible
method for its solution, We will take the distribution, obtained without explicitly taking into account V—T
processes in [2], as the zero-order approximation,

o !rx\'flo)exp{—n<TE‘—Z."—(-'-”;—i))},ngn*,
No' =1 o ot vy (1.5)
lNS,*)Te_ 2 n>n*,
Here n* =(E,;T/2AT), +1/2 is the number of the level corresponding to the minimum Treanor distribution
with population temperature of the first level T;. The distribution (1.5) describes correctly only the

Treanor distribution and plateau regions.

In the case of a strong deviation from equilibrium V—V exchange in the upper group of levels (n> n*)
occurs preferably with neighbors and the contribution of V—T processes to P} +1,1 becomes significant
only when n—n* > 1. These two conditions lead to the fact that V—T processes will not vary the distribu-
tion when n=n*, so that the Treanor distribution will remain invariant in the iterations. On the other

hand, these conditions make it possible to approximate the exchange sums in Eq. (1.2),

* * 1)z
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*N(ll) —1/2
S=ORTE P P @ — ) = b4 2
b4

Using these probabilities, we calculate the ratio ¢, of populations of the two next levels to a first approxi-
mation,
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Let us note that we obtain a distribution coinciding with Eq. (1.5) if we disregard the contribution of V—T
processes in Egs. (1.6) and if we substitute Eqgs. (1.7) in (1.4).

Equation (1.7) is rather complex for calculations, so that we will simplify it. According to Egs. (1.5),
there exists a drop in population in the region of the plateau proportional to 1/n. Moreover, a decrease in
the populations of the higher vibrational levels occurs as a consequence of an increase in the role of V=T
processes. We may find using Eqgs. (1.7) the level r above which the drop due to V—T processes is most
substantial, This level is determined by the equation

et = 2_CF, (1.8)

where in the region in which the slope is determined by V=T processes (n> r), (n +1Y/n=~1,

Since r>1, the role of V—T processes is insignificant when n< r as follows from Eq. (1.8), and the
distribution practically coincides with Eqs. (1.5) to a first approximation. When n> r, we have

n—1 n—1t nTl
NP =NP T o =N‘r°’exr>{2 lncpi}zN‘r‘”exp { [ dilng, + 5 (ne,+1ngu_i)p. (1.9)
i=pr i=r r
We note that the replacement of the sum in Eq. (1.8) by the integral is permitted, since In ¢j slowly varies
from level to level. The integral in Eq. (1.9) is calculated approximately by expanding the logarithm into
a series and retaining two terms in the decomposition (the error is insignificant). We then obtain when
r=n=p



N - N(O)ex{ ( > (n—i«l’))ﬁ___e(r*‘i—lf)ﬁl}, {1.10)
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(p is 2 parameter that arises upon integration). We may obtain the distribution to a first approximation
also when n> p, but it will not be subsequently required and is therefore not presented. Obviously, the
distribution to a first approximation is an upper bound, since the exchange sums used in calculating Eq.
(1.9) are overstated [they are calculated using the slowly decreasing (for large n) distribution (1.5)].

1t is difficult to calculate the populations at all vibrational levels using subsequent iteration in an
analytic form. We will therefore use an approximation that allows us to satisfacterily describe the dis-
tribution with respect to levels. We note that vibrational exchange on the platean chiefly occurs between
neighboring levels. A drop in the distribution (1.10) occurs in the transition region. This leads (unlike
the case of the plateau) to the fact that the contribution of neighboring levels is small and that exchange
occurs preferably with distant levels having greater population at sufficiently high level numbers. We
may prove, using the probability (1.3}, that a transition from short-range exchange to long~range exchange
occurs in the region of the level s satisfying the condition

Ttt o, (1.11)

s

We find, proceeding on the basis of the distribution (1.10), that
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We find that s is less than p in most cases of interest, which corresponds to the inequality 26 < (2 +8)
(l—e-a) . This condition leads to constraints on gas temperature with the given parameters (for N,, for
example, s< p when T > 0.02 eV).

Direct calculation of the distribution to a second approximation is difficult to carry out when n< s,
However, we may expect that even the first iteration in this region satisfactorily describes the distribution.
This is due to the fact that when n< s, the contribution of V=T processes to Pf,, ,, is not great, so that
some decrease in the exchange sums in this region will not noticeably influence the distribution as we pass
from the zero-order approximation to the first approximation. Therefore, the populations in the second
approximation will be found only when n> s. The contribution of levels with numbers less than s will be
taken into account in the exchange sums of Eqs. (1.2). We find that
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where y(a, t) is an incomplete gamma function,t by replacing the exchange sums with distribution (1.10)
by integrals and taking into account the fact that s—r«s. We find the populations in the second approxima-
tion using Eq. (1 .4).

As before, replacing the sum by an integral, which is calculated approximately, we obtain
N& =N ;H exp{ (1) %0 4y }» (1.12)
8
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T The curve y(a, %) is presented in [8].
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The distribution is given by Eq. (1.5) in the region 0 =n=r and by Eq. (1.10) inthe region r =n=s, Thus
our distribution describes all three characteristic regions and becomes a Boltzmann distribution at levels
with numbers n, such that n—q,> 1.

A number of assumptions were made in calculating the distribution, since it is quite difficult to esti-
mate the accuracy of our calculations. A comparison of the distribution found above to results of numerical
calculations can thus be a fundamental criterion, Unfortunately, no numerical calculations of a stationary
distribution under strong nonequilibrium conditions exist in the literature for nonradiating moiecules.

Thus numerical calculations of stationary distributions were carried out for the system of equations
(1.1)~(1.3). The parameters determining the probabilities (1.3) correspond to a molecule of N,. The mag-
nitudes A and 6 were found from the equations A =w?/4D (D is the dissociation energy of N,) and 6 =0.0765
T"1/ 2(T, eV) [L]. Figure 1 depicts calculations of the distributions for the two variants: curves 1, T =
0.03 eV and T;=0.252 eV; curves 2, T=0.1 eV and T,=0.406 eV (curves 2 are shifted for convenience three
orders of magnitude below the y axis). The unbroken curves correspond to an exact numerical calculation,
while the dashed-dot curves correspond to a calculation using the equations presented in this work.t Sat-
isfactory agreement is obtained. ‘

A calculation of the distribution using previously obtained [3, 4] equations is depicted here for the
first variant of the dashed-dot curve. It is evident by comparing the numerical calculations and the pre-
vious [3, 4] results that the transition region in the latter case is shifted towards highly excited levels.
This divergence is possibly due to the calculation of the constant, on which the distribution depended in
[3, 4] and which was selected by comparing exact numerical calculations carried out for carbon monoxide
and a carbon monoxide—helium mixture,

§ 2. We will obtain a relaxation equation for the quantum number Q = X kN,/N,. using the distribu-
k

tion with respect to vibrational levels (1.5), (1.10), and (1.12) .' Neglecting excitation processes under these
conditions, we find that

‘L EPn-I;i n]\rn—l-i ’ (2.1)
NH n ’

T Results presented in Fig. 1 of analytic calculations inthe region n =n* were obtained by multiplying Eq.
(1.5) by exp{ —n/2n*} in order to match the distribution when n>n *,
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while we may limit ourselves in summing with respect to n as a consequence of Eq. (1.11), to levels with
number n=s—1. The influence of the Treanor region on relaxation can be ignored under strong nonequilib-
rium conditions. We then write the rate of variation of the guantum number in the form

0)—1/2 __ g—b(r—n*) 2 248 [ «
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by substituting the plateau distribution (1.5) in Eq. (2.1) and using Eq. (1.10) for the transition region up to
the level s—1.

An analogous equation was obtained in {3, 4]. We note that dQ /dt caleulated in accordance with {3, 4]
increases the corresponding value given by Eq. (2.2) by roughly a factor of 10 under the conditions of the
first variant.

§ 3. Let us obtain an equation for the nonequilibrium dissociation constant for diatomic molecules,
The distribution in the case of equilibrium and nonequilibrium dissociations is identical in a sufficiently
large group of upper levels, i.e., it is a Boltzmann distribution distorted only near the continuum. We may
therefore assume, in analogy with [3], that the rate constant of nonequilibrium and equilibrium dissocia-
tions are related in the same way as the corresponding populations near the dissociation threshold, i.e.,

N
Ka(T, Ty) = Ka(T) 5> n— g > 1. (.1)
n
Substituting the value of Ny when n—q,> 1, in Eq. (3.1), we obtain the nonequilibrium dissociation
constant,

* E. 2, ; 1 246 —
Ko(T,T;) = Ko(T) 2= (1 — e™5/T) eXP{-r—7<n*V—T—;s%+ i

G @ o) gty — 2 ) g [ = e g (1 - T o = maxs, )

In conclusion, we note that the results of this work refer only to the case of a single~-component gas
of diatomic molecules lacking a dipole moment. An investigation of the vibrational distribufion of mole~
cules having a dipole moment or constituting an addition to a neutral gas leads fo a dependence of transi-
tion probabilities that differs from Eq. (1.3). This leads to substantial difficulties in considering the prob-
lem by the method set forth.
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