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INTRODUCTION 

The influence of vibrational anharmonicity on the distribution of molecules under unbalanced conditions 
has been studied in a number of papers [1, 2-4]. Nonequilibrium conditions are due to an increase in the vi- 
brational energy resources of the molecules beyond the equilibrium value corresponding to the gas tempera- 
ture. The basic details of the distribution have been clarified [5, 6] for steady-state conditions. A Treanor 
[7] distribution is realized in the lower group of levels. A group of levels whose concentration varies quite 
slowly is next and the distribution has the form of a plateau. Quantum exchange processes predominate in 
this group of levels as well as in the region of the Treanor distribution. Vibrational-translational exchange 
becomes substantial in the upper part of the vibrational levels. This induces a drop in the populations and, in 
the end, leads to a Boltzmann distribution. All three characteristic regions of the distribution are realized 
only under highly nonequilibrium conditions (a criterion under which the three regions exist was obtained in 
[3, 4]). Distribution relative to levels in the Treanor region and on a plateau has been analytically described 
in [2], in which a diffusion approximation was used to obtain the corresponding equation. A plateau region co- 
inciding with previous results [2] also in passing from a plateau to a Boltzmann distribution has been found [3, 
4] using this approximation. However, the approximation and the use of a number of assumptions in [3, 4] do 
not allow a sufficiently precise description of the entire transition region. In this work, using a system of 
balance equations for particles on the vibrational levels, an approximate analytic equation for the distribution 
in the transition region is obtained for steady-state conditions. The case of strong nonequilibrium conditions 
in a single-component gas of diatomic nonradiating molecules is considered. The distribution corresponding 
to the analytic equation agrees with results of a numerical calculation. A relaxation equation for the number 
of vibrational quanta and the rate constant for nonequilibrium dissociation are also obtained. 

w 1. A Morse oscillator (energy of k-th level, Ek=Wk-X k 2) will be taken as themodel of a molecule. 

Vibrational relaxation of nonradiating molecules is described by the system of balance equations 

dN n 
dt - -  ] s §  in ,  
t 

] n . l  = P,~+ l,,JV,,+ t - -  P~,,~+l Nn,  

(i.i) 

where N n is the concentrat ion of molecules  on the n- th  vibrat ional  level, P'n+1, n is the probability of the 
t ransi t ion n +1-~ n within a unit of t ime and is determined by v ib ra t iona l - t rans la t iona l  and v i b r a t i o n a l - v i b r a -  
tional exchange s ( V - T  and V -  V processes ,  respectively):  

| ~ flm,m-~-i A7 (1.2) 

where N~ = ~ N ~  is the concentrat ion of molecules .  

given in the form [1] 

The probabilit ies of V - T  and V - V  processes  can be 
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where  6 depends on gas t e m p e r a t u r e  T and the p a r a m e t e r s  of the molecule .  

The t ime  der iva t ives  in Eqs.  (1.1) vanish  under the s t eady - s t a t e  conditions and Eqs.  (1.1) canbe  r e w r i t -  
ten,  without taking into account d issoc ia t ion  (in = 0), in the f o r m  [1] 

v-- I  * 
P~,t+l Nn = Nh 1 ]  (P~, ~i = p.' �9 (1.4) 

i=h ~-bl,i 

The s y s t e m  of equations (1.4) for  populations is nonl inear  and a method of i te ra t ions  can be one possible  
method for  its solution. We wil l  take the distr ibution,  obtained without explici t ly taking into account V - T  
p r o c e s s e s  in [2], as  the z e r o - o r d e r  approximat ion ,  

N ~  ) t T, (" r ' (1 .5)  
= t At(0) n* e-- l /2  

( ~ ' n *  ~ ' -  , n ~ ?/,*. 

Here  n* = ( E 1 T / 2 t T  1) +1/2 is the number  of the level  cor responding  to the min imum T r e a n o r  dis tr ibut ion 
with population t e m p e r a t u r e  of the f i r s t  level  T 1. The dis tr ibut ion (1.5) desc r ibes  c o r r e c t l y  only the 
T r e a n o r  dis tr ibut ion and plateau reg ions .  

In the case  of a s t rong  deviat ion f r o m  equi l ibr ium V - V  exchange in the upper  group of levels  (n > n*) 
occu r s  p re fe rab ly  with neighbors  and the contr ibut ion of V - T  p r o c e s s e s  to P* becomes  significant n + l ,  n 
only when n - n *  >> 1. These  two conditions lead to the fact  that  V - T  p r o c e s s e s  will not va ry  the d is t r ibu-  
t ion when n-~n *, so that  the T r e a n o r  dis t r ibut ion will r e m a i n  invariant  in the i te ra t ions .  On the other 
hand, these  conditions make  it poss ib le  to approx imate  the exchange Sums in Eq. (1.2), 

�9 (n-i-, P . , . + J  = P . , . + l  + (n + 1) 8 ,  P : + l , .  = P,,+l.. + ,, i)~ S, (1 .6)  

n * N(O)e- - t  /2 2~ 
S = Q~0 .N. F, F =(e  ~ -- t) -1 + (e+ --  t) - t ,  c+ = 5 -[- -T" 

Using these  probabi l i t ies ,  we calcula te  the ra t io  ~o n of populations of the two next levels  to a f i r s t  approxi -  
mation,  

Et D ! 0~, ~(0) e -  1/2 
R e  an  -+- C F  T ~01" �9 ,,* (1.7) 

( P n =  e6 n - ~ - C F  n _ ' ~  t ' R = e , C ~ P~oN M 
n 

Let us note that  we obtain a d is t r ibut ion coinciding with Eq. (1.5) if we d i s r e g a r d  the contribution of V - T  
p r o c e s s e s  in Eqs.  (1.6) and if we subst i tute  Eqs.  (1.7) in (1.4). 

Equation (1.7) is r a t he r  complex  fo r  calculat ions,  so that we will s impl i fy  it. According to Eqs. (1.5), 
the re  ex is t s  a drop in population in the region of the plateau propor t ional  to 1/n.  Moreover ,  a dec rea se  in 
the populations of the higher  v ibra t iona l  leve ls  occu r s  as  a consequence of an i nc rea se  in the role  of V - T  
p r o c e s s e s .  We may  find using Eqs .  (1.7) the level  r above which the drop due to V - T  p r o c e s s e s  is mos t  
substant ia l .  This  level  is de te rmined  by the equation 

o~ =  -cF: (18) 

where  in the region in which the slope is de te rmined  by V - T  p r o c e s s e s  (n> r),  (n+l)/n~- 1. 

Since r>>l ,  the ro le  of V - T  p r o c e s s e s  is insignificant when n< r as follows f r o m  Eq. (1.8), and the 
d is t r ibut ion p rac t i ca l ly  coincides with Eqs.  (1.5) to a f i r s t  approximat ion.  When n > r ,  we have 

N(, 1)= N~ ) [ [  (~i =NT)exp  ~ ln~~ ~N(r~ diln(pi ~- T ( l n % - t - l n  (~+,-,) �9 (1.9) 
i ~ r  i ' 

We note that the r ep l acemen t  of the sum in Eq. (1.8) by the in tegra l  is permi t ted ,  s ince In goi s lowly va r i e s  
f r o m  level  to level .  The in tegra l  in Eq. (1.9) is ca lcula ted  approx imate ly  by expanding the logar i thm into 
a s e r i e s  and re ta in ing two t e r m s  in the decomposi t ion  (the e r r o r  is insignificant).  We then obtain when 
r_~n_~p 
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p = ~ = r ~ ,  71nr  

(p iS a p a r a m e t e r  that  a r i s e s  upon integrat ion) .  We may  obtain the dis t r ibut ion to a f i r s t  approx imat ion  
a lso  when n> p, but it will not be subsequent ly  requ i red  and is t h e r e f o r e  not p resen ted .  Obviously,  the 
dis t r ibut ion to a f i r s t  approximat ion  is an upper  bound, since the exchange sums  used in calculat ing Eq. 
(1.9) a re  ove r s t a t ed  [they a r e  ca lcula ted  using the slowly dec reas ing  (for la rge  n) dis t r ibut ion (1.5)]. 

It is difficult to ca lcula te  the populations at all  v ibra t iona l  levels  using subsequent  i tera t ion in an 
analytic f o r m .  We will t he r e fo re  use an approximat ion  that al lows us to sa t i s fac to r i ly  desc r ibe  the d is -  
t r ibu t ion  with r e s p e c t  to levels .  We note that  v ibra t ional  exchange on the plateau chiefly occurs  between 
neighboring levels .  A drop in the dis t r ibut ion (1.10) occu r s  in the t rans i t ion  region.  This  leads (unlike 
the ease  of the plateau) to the fact  that  the contr ibution of neighboring levels  is smal l  and that exchange 
occu r s  p r e f e r a b l y  with distant  levels  having g r e a t e r  population at sufficiently high level  number s .  We 
may  prove,  us ing  the probabi l i ty  (1.3), that  a t rans i t ion  f r o m  s h o r t - r a n g e  exchange to long-range  exchange 
o c c u r s  in the region of the level  s sa t is fying the  condition 

N..+,! = e_~. ( 1 . l l )  
.,V s 

We find, proceeding on the bas i s  of the dis t r ibut ion (1.10), that 

t [  2~6 ] 
s = P + T l n  (2--6)~-_e--~) " 

We find that  s is l e s s  than p in mos t  eases  of in te res t ,  which cor responds  to the inequali ty 2a5  < (2 +5) 
( 1 - e - 5 ) .  This  condition leads to cons t ra in t s  on gas t e m p e r a t u r e  with the given p a r a m e t e r s  (for N2, for  
example ,  s < p when T > 0.02 eV). 

Direc t  calcula t ion of the dis t r ibut ion to a second approximat ion  is difficult to c a r r y  out when n< s.  
However ,  we may  expect  that  even the f i r s t  i tera t ion in this region sa t i s fac to r i ly  de sc r ibe s  the dis tr ibut ion.  
This  is due to the fact  that when n< s, the contr ibution of V - T  p r o c e s s e s  to P~+l n is not grea t ,  so that  
some  d e c r e a s e  in the exchange sums  in this  region will not not iceably influence t~ae dis t r ibut ion as we pass  
f r o m  the z e r o - o r d e r  approximat ion  to the f i r s t  approximat ion .  The re fo re ,  the populations in the second 
approximat ion  will be found only when n > s .  The contr ibution of levels  with numbers  l e s s  than s will be 
taken  into account in the exchange sums  of Eqs.  (1.2). We find that 

Re ~i ~ Ae -6i 
(~ , i  ~ e6 ~ .j_ Be_O~i ~ 

A = CoSp ~ = 

e~ t), 

where  3/(a,  t) is an incomplete  g a m m a  function,r by rep lac ing  the exchange sums with dis tr ibut ion (1.10) 
by in tegra ls  and taking into account the fact  that s - r < <  s.  We find the populations in the second approx ima-  
t ion using Eq. (1.4). 

As before ,  rep lac ing  the sum by an integral ,  which is calcula ted approximate ly ,  we obtain 

B 
.%,(z).,~+, = N;,)N;+'N~ exp[--( y "~ e ~ + Z.+' }, i1.12) 

o 
Z n + l  = "E" [(qz - -  q,)  (q~ -k  qe q-  t - -  2s )  Jr- (q,  - -  x)  ( t  -b  n -b Y - -  q ,  - -  q,) ]  

-}- ~ [eo(s--qt) n--q~ C~ __e--Oln--qd ) n--q't ( l  __ ~3--O(w..-q,, )] 
- -  - t-  ~ I,, - qd ' ' 

q:t > S, 
CThe curve  T(a ,  x) is p resen ted  in [8]. 



y = min {n, ql}, z -= rain {n, q=}, {} = ~ -t- 8, 

, , / 
ql = --0- In B, q._ = --~ in --K " k = N.~,e -sk/T,  x = In, ql < n ~.  q~. 

The distribution is given by Eq. (1.5) in the region 0-<n-< r and by Eq. (1.10) inthe region r-< n-<s.  Thus 
our  distribution descr ibes  all three charac te r i s t i c  regions and becomes a Boltzmann distribution at levels 
with numbers  n, such that n - q  2 >> 1. 

A number of assumptions were made in calculating the distribution, since it is quite difficult to es t i -  
mate  the accuracy  of our  calculat ions.  A compar i son  of the distribution found above to resul ts  of numerical  
calculat ions can thus be a fundamental c r i te r ion .  Unfortunately, no numer ica l  calculations of a s tat ionary 
distribution under s t rong nonequilibrium conditions exist in the l i tera ture  for  nonradiating molecules .  

Thus numerical  calculat ions of s ta t ionary  distributions were  ca r r i ed  out for the sys tem of equations 
(1.1)-(1.3). The pa ramete r s  determining the probabi l i t ies  (1.3) cor respond to a molecule of N 2. The mag-  
nitudes X and ~ were  found f rom the equations ~ =w2/4D (D is the dissociat ion energy of N2) and 6 =0.0765 
T -1/2 (T, eV} [1]. Figure  1 depicts calculat ions of the distributions for the two variants:  curves 1, T = 
0.03 eV and T 1 = 0.252 eV; curves  2, T = 0.1 eV and T 1 = 0.406 eV (curves 2 are  shifted for convenience three 
o rde r s  of magnitude below the y axis). The unbroken curves  cor respond  to an exact numerica l  calculation, 
while the dashed-dot  curves  co r re spond  to a calculation using the equations presented in this work.~ Sat- 
i s fac tory  agreement  is obtained. 

A calculation of the distr ibution using previously obtained [3, 4] equations is depicted here  for ~the 
f i r s t  variant  of the dashed-dot  curve.  It is  evident by compar ing the numerical  calculations and the p re -  
vious [3, 4] resul ts  that the t rans i t ion  region in the lat ter  case  is shifted towards highly excited levels.  
This divergence is possibly due to the calculation of  the constant,  on which the distribution depended in 
[3, 4] and which was selected by compar ing  exact numer ica l  calculations ca r r i ed  out for  carbon monoxide 
and a carbon monox ide -he l ium mixture .  

w 2. We will obtain a relaxation equation for  the quantum number  Q = ~ kNk/N~, using the dis t r ibu-  
k 

tion with respect  to vibrational  levels (1.5), (1.10), and (1.12}. Neglecting excitation p rocesses  under these 
conditions, we find that 

dQ t ~P,,+i,,~N,,+l, (2.1) 

T Results  presented in Fig. 1 of analytic calculations inthe region n -< n* were obtained by multiplying Eq. 
(1.5) by exp{ - n / 2 n * }  in o rde r  to match the distribution when n> n * 
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while we may limit ourse lves  in summing with respect  to n as a consequence of Eq. ( t .1i) ,  to levels with 
number  n = s - 1 .  The influence of the Treanor  region on relaxation can be ignored under s t rong nonequilib- 
r ium conditions. We then write the rate  of variation of the quantum number in the form 

d, = 2v, p,o~,~ i- +r+~:,p I- ~'~Pl-e-r-5-T_ i/j!' - 
- -  6e 8 

by substituting the plateau distr ibution (1.5) in Eq. (2.1) and using Eq. (1.10) for  the t ransi t ion region up to 

the level s - 1 .  

An analogous equation was obtained in [3, 4]. We note that dQ/d t  calculated in accordance  with [3, 4] 
inc reases  the corresponding value given by Eq. (2.2) by roughly a factor  of 10 under the conditions of the 
f i rs t  variant .  

w 3. Let us obtain an equation for the nonequilibrium dissociat ion constant for  diatomic molecules .  
The distr ibution in the case of equilibrium and nonequilibrium dissociat ions is identical in a sufficiently 
la rge  group of upper levels,  i.e., it is a Boltzmann distribution dis tor ted only near the continuum. We may 
there fore  assume,  in analogy with [3], that the rate  constant of nonequilibrium and equilibrium dissocia-  
tions a re  re la ted  in the same way as the corresponding populations near  the dissociat ion threshold,  i.e., 

Kd (T, TI) = Kd (T) Nn --~-, n - q~ >~ i .  ( 3 . i )  

Substituting the value of Nn when n -q2  >> 1, in Eq. (3.1), we obtain the nonequilibrium dissociat ion 
constant,  

E t + 2 - ~ ;  K~(r,T,)=Kd(T) ~_L* ( i_~-~ , , r , ) .  exp T - ~ ( ~ * ? -  2 ~6_, 

- k  - - ~  (q~ - -  v )  (q~ - k  v - -  2 s  + 1)  - k  --0- t - -  . -4- Is - -  q~t ' -  , v = 

In conclusion, we note that the resu l t s  of this work re fe r  only to the case of a s ingle-component  gas 
of diatomic molecules  lacking a dipole moment.  An investigation of the vibrational distribution of mole-  
cules having a dipole moment o r  constituting an addition to a neutral  gas leads to a dependence of t r ans i -  
tion probabili t ies that differs f rom Eq. (1.3). This leads to substantial difficulties in considering the prob- 
lem by the method set forth. 

The authors wish to express  their  appreciat ion to S. Ya. Bronin and A. Kh. Mnatsakanyan for  their  
in teres t  in the work and for  useful discussion.  
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